

West Fraser

1250 Brownmiller Road
Quesnel, BC
Canada V2J 6P5

Telephone: (250) 992-9244
Fax: (250) 992-9233

Tuesday, February 10, 2026

RE: FSP 651 Amendment 3: FPPR Section 12(7) exemption request rationale

West Fraser Mills Ltd, to enable the salvage of dead and damaged timber associated with fire R11277 from 2023 (Fisheries Fire) is applying for an exemption under the Forest Planning and Practices Regulation section 12(7). This was a large fire that affected two visual polygons with an EVQO of PR (GAR 7(2): April 1, 2010). To facilitate this salvage an exemption has been applied for under FPPR Section 12(7) for the visual polygons 247(Babine Lake) and 279 (Taltapin), each with a VQO of Partial Retention for the purpose of harvest of the openings SAL-17A1, A2, A3, 17B, 17C1, 17C2, 17D, 21 and 778-1. This letter has the rationale on why harvest as proposed, is a benefit over leaving un-salvaged.

Visual Mitigation strategy:

Our visual analysis of final block boundaries shows that salvage within visual polygons 247 and 279 will not achieve the objective of PR. This is due to the large scale of salvage necessary to recover dead timber in these blocks. The Fisheries fire also killed the timber that were part of the landscape screening associated with the approved cutting permit 778 block 1. Salvage of the dead timber will now increase the contribution of CP 778-1 to the alteration on the landform. The summary from the VIA states "*The proposed blocks SAL-17A1, SAL-17A2, SAL-17A3, SAL-17B, SAL-17C1, SAL-17C2, SAL-17D, SAL-21, and 778-1, while natural in shape / design, in combination when seen from key viewpoints on Babine and Taltapin Lake appear are assessed as not meeting the scale (percent alteration) component of the definition of the applicable VQO of Partial Retention.*"

The layout of these salvage blocks focused on recovering as much dead timber as practicable. To address visual design and biodiversity, retention areas were focused on green stems to break up the openings. Areas containing standing green were ribboned out to contribute to WTR on the blocks. The operational harvest practice will be to avoid skidding over visible regeneration that may occur throughout the blocks and to retain green aspen/cottonwood and under merch live scattered stems where practicable. Layout crews were instructed to closely follow the fire/green boundary where terrain allowed. This all helped maintain natural character on the blocks as the boundary is non-linear. Accompanying this rationale are the photos that were associated with the cruising conducted in these blocks. They provide a great indication of the amount of fire damage and condition of understory.

Table 1 below shows the retention and cruise results by block. Overall, the salvage will remove 90% dead stems and 88% dead volume within their boundaries.

Table 1.

CP	Blk	Gross	WTR	Merch	%WTR	Dead % Stems/ha	Dead % m3/ha
SAL	17A1	27.6	5.4	22.2	19.6%	83%	84%
SAL	17A2	296.5	61.8	234.7	20.8%	88%	85%
SAL	17A3	11.9	0.7	11.2	5.9%	97%	89%
SAL	17B	221.7	63.3	158.4	28.6%	93%	89%
SAL	17C1	30.9	4.2	26.7	13.6%	98%	94%
SAL	17C2	12.6	2.6	10.0	20.6%	100%	100%
SAL	17D	24.8	6.3	18.5	25.4%	100%	100%
SAL	21	49.0	6.3	42.7	12.9%	71%	68%
	Total	675.02	150.6	524.4	22.3%	90%	88%

The Fisheries fire (R11277), as mapped burned 1171ha of polygon 247 (2568ha) and 601 ha of polygon 279 (3923ha). The fire boundary is not correct as block 21 is outside of the mapped fire polygon but is harvesting fire damaged timber within polygon 279. In total the proposed harvest removes 37% of the fire damaged timber in polygon 247 and approximately 14% of the fire damaged timber in polygon 279.

Table 2.

Block	Harvest Area (ha)	Visual Polygon	EVQO
17A1	22.2	247	PR
17A2	234.7	247	PR
17A3	11.2	247	PR
17B*	130.8	247	PR
17C1	26.7	247	PR
17C2	10	247	PR
Total	435.6		
17B	22.1	279	PR
17D	18.5	279	PR
21	42.7	279	PR
Total	83.3		

*portion of block is outside Visual Polygon - area is not recorded in table.

Green up:

As described for visual mitigation, areas were identified within the cutblock boundaries that contained surviving green stems. In addition, outside these identified areas, the standard harvest practice is to avoid patches of visible regeneration/green understory during falling and skidding. While the encountered regeneration on these blocks is low and patchy in distribution, their maintenance will supplement the standard stocking placed into these blocks under standard regeneration practice. Table 3 shows the regeneration encountered during prescription development. The plot data was collected

prior to the final splitting of blocks. There is sparse regeneration in these blocks after one and two growing seasons.

Table 3.

Block	Plot	Regen <1.3m	Survey Date	Growing seasons post fire	Comment
17A	1	0	1-Jul-25	1	No regen present, understory all burned
17A	2	400	1-Jul-25	1	Some small patches of pre-fire saplings
17A	3	0	1-Jul-25	1	No regen present, understory all burned
17A	4	0	1-Jul-25	1	No regen present, understory all burned
17A	5	0	1-Jul-25	1	No regen present, understory all burned
17A	6	0	1-Jul-25	1	No regen present, understory all burned
17A	7	0	1-Jul-25	1	No regen present, understory all burned
17A	8	800	1-Jul-25	1	Sparse germinants present
17A	9	0	15-Jul-25	1	Regen all burned
17A	10	0	15-Jul-25	1	Regen all burned
17A	11	0	15-Jul-25	1	Regen all burned
18% of plots had some regeneration.					
17B	1	0	18-Jun-25	1	Regen all burned
17B	2	0	18-Jun-25	1	Regen all burned
17B	3	0	18-Jun-25	1	Regen all burned
17B	4	0	19-Jun-25	1	Regen all burned
17B	5	0	2-Jul-25	1	Regen all burned
17B	6	0	2-Jul-25	1	Regen all burned
17B	7	0	2-Jul-25	1	No regen present, understory all burned
0% of plots had regeneration					
17C	1	200	17-Jun-25	1	Pl germinants
17C	2	0	17-Jun-25	1	No regen present, understory all burned
50% of plots had some regeneration					
17D	1	200	18-Jun-25	1	Pl germinants
17D	2	0	10-Oct-25	2	No regen present, understory all burned
50% of plots had some regeneration					
21	1	80	16-Jul-25	1	Pl/At germinants
21	2	0	17-Jul-25	1	No regen present, understory all burned
50% of plots had some regeneration					

For areas in this fire, visual effective green-up will be delayed by the fact that the fire damaged stands could remain for years. This will maintain the perception of a damaged stand and delay the condition where public perceives a regenerated forest (VEG). West Fraser's experience of harvesting in the Shovel fire within similar SxPBI stands (EM3A85-1) shows that a 2018 fire may not have appreciable regeneration even in 2025 (7 yrs later) in a stand comprised of 95% dead volume. A drone image of this block is attached that provides a comparison between harvested and unharvested areas following harvest in 2025 within this block. There is not an observed difference in 'green-up' between reserves and harvested areas unless the reserve was a fire skip.

The planned harvest will remove the damaged timber, retain clumps of 'greener' areas (WTR), avoid clumps of visible regeneration/green understory, and then regenerate with improved stock as per the stocking standards in the approved FSP. If left to regenerate naturally, there is uncertainty when the stands will become 'well-stocked' stands and meet VEG.

To help compare a naturally regenerated stand vs a planted well-stocked stand, the Procedures for Factoring Visual Resources into Timber Supply Analyses¹ was used to determine VEG heights for each block and then checked against TASS runs for three scenarios.

Table 6. Tree height required to meet VEG by percent slope for well stocked stands

Slope Class %	0-5	6-10	11-15	16-20	21-25	26-30	31-35	36-45	46-50	51-55	56-60	60+
Tree Height	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5

The three scenarios were based upon: 1) regeneration seen during layout with no appreciable ingress, 2) ingress so that all stands naturally achieve 1200sph within 15yrs with a clumpy distribution, and 3) stocked stand to 1200sph with genetic worth for PI@15% and Sx@30%. In all cases, the trees reach similar heights in the year 2046. Planting was assumed to occur in 2028.

Natural	216sph yr 1 only				Natural 1200sph over 15yrs clumped distribution								Planted 1200sph					
	Stand		Top	Number	Crown	Volume	Model Year	Stand	Top	Number	Crown	Volume	Model Year	Stand	Top	Number	Crown	Volume
	Year	Model Year	Age	Height	Alive	Closure	Total	Age	Height	Alive	Closure	Total	Age	Height	Alive	Closure	Total	
		years	m	#/ha	%	m ³ /ha		years	m	#/ha	%	m ³ /ha		years	m	#/ha	%	m ³ /ha
2024	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1156	0	0
2025	1	1	0	216	0	0	1	1	0	60	0	0						
2026	2	2	0	216	0	0	2	2	0	224	0	0						
2027	3	3	0	216	0	0	3	3	0	476	0	0						
2028	4	4	0	216	0	0	4	4	0	708	0	0	0	1	0	1156	0	0
2029	5	5	0	216	0	0	5	5	0	948	0	0	1	2	0	1156	0	0
2030	6	6	0	216	0	0	6	6	0	1076	1	0	2	3	0	1152	0	0
2031	7	7	1.32	216	0	0	7	7	0	1132	1	0	3	4	0	1152	1	0
2032	8	8	1.42	216	1	0	8	8	1.32	1176	1	0	4	5	0	1148	2	0
2033	9	9	1.57	212	1	0	9	9	1.44	1192	2	0	5	6	0	1144	3	0
2034	10	10	1.77	212	1	0	10	10	1.53	1192	2	0	6	7	1.36	1144	4	0
2035	11	11	2.02	212	1	0	11	11	1.66	1188	3	0	7	8	1.49	1140	5	0
2036	12	12	2.28	212	2	0	12	12	1.85	1188	4	0	8	9	1.7	1140	7	0
2037	13	13	2.56	212	2	0.1	13	13	2.08	1184	5	0.1	9	10	1.94	1136	8	0.1
2038	14	14	2.84	212	2	0.1	14	14	2.32	1184	6	0.1	10	11	2.2	1136	10	0.1
2039	15	15	2.97	212	3	0.1	15	15	2.57	1180	7	0.2	11	12	2.48	1132	12	0.2
2040	16	16	3.15	212	3	0.1	16	16	2.83	1180	9	0.2	12	13	2.77	1128	14	0.3
2041	17	17	3.33	212	3	0.2	17	17	3.09	1176	10	0.4	13	14	3.04	1128	15	0.4
2042	18	18	3.47	212	3	0.3	18	18	3.37	1172	11	0.5	14	15	3.34	1124	17	0.6
2043	19	19	3.68	212	4	0.3	19	19	3.65	1172	12	0.7	15	16	3.64	1124	19	0.8
2044	20	20	3.94	212	4	0.4	20	20	3.95	1168	13	0.9	16	17	3.93	1120	21	1
2045	21	21	4.2	208	4	0.5	21	21	4.21	1168	14	1.1	17	18	4.26	1116	23	1.3
2046	22	22	4.48	208	5	0.6	22	22	4.49	1164	15	1.4	18	19	4.52	1116	26	1.7
2047	23	23	4.75	208	5	0.8	23	23	4.78	1164	17	1.8	19	20	4.82	1112	29	2.2
2048	24	24	5.03	208	6	0.9	24	24	5.03	1160	18	2.2	20	21	5.11	1112	32	2.7
2049	25	25	5.3	208	6	1.1	25	25	5.29	1160	20	2.7	21	22	5.42	1108	35	3.4
2050	26	26	5.58	208	7	1.3	26	26	5.57	1156	21	3.3	22	23	5.71	1104	38	4.2

There is not a difference in tree heights between the comparisons. VEG for the average slope of 20% is 4.5m and all runs achieve this in 2046. The difference is in the crown closure where a planted stand has a higher modeled crown closure than either of the natural versions in 2046. Beyond 2046, the planted stand also begins to pull away in height from the natural stands. There is a significant difference

¹ https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/forestry/visual-resource-mgmt/vrm_procedures_for_factoring_timber_supply_analyses.pdf

between 5% and 15% with standing snags, and 26% crown closure in a planted stand from a VEG perspective, so a net benefit to VEG from salvaging the stands is anticipated. From our perspective, a regenerating stand without excessive snags and blowdown better meets the definition of VEG as the stand will look greener and healthier.

Another characteristic of the TASS runs is that when the planted stand achieves 75yrs of age, it is modeled to provide 240m³/ha vs 162m³/ha in the next highest natural scenario. This means salvaging the stands is a net benefit to timber supply.

Year	216 sph yr 1 only				Natural 1200sph over 15yrs clumped distribution								Planted 1200sph							
	Model Year	Age	Stand	Top	Number	Crown	Volume	Model Year	Stand	Top	Number	Crown	Volume	Model Year	Stand	Top	Number	Crown	Volume	
			Height	Alive	Closure	Total	m ³ /ha	Age	Height	Alive	Closure	Total	m ³ /ha	Age	Height	Alive	Closure	Total	m ³ /ha	
years	years	m	#/ha	%	m ³ /ha	years	m	years	m	#/ha	%	m ³ /ha	years	m	#/ha	%	m ³ /ha	years	m ³ /ha	
2102	78	78	16.58	200	38	64.4	78	78	15.84	924	82	161.7	74	75	18.31	1056	98	240.1		
2103	79	79	16.76	200	38	66.5	79	79	16.02	920	82	165.9	75	76	18.52	1056	98	246		
2104	80	80	16.93	200	38	68.6	80	80	16.18	920	83	170.6	76	77	18.76	1056	98	251.8		
2105	81	81	17.1	200	39	70.7	81	81	16.29	920	83	175.2	77	78	18.96	1052	98	257.1		
2106	82	82	17.26	200	39	72.9	82	82	16.46	916	83	179.4	78	79	19.16	1048	98	262.5		
2107	83	83	17.43	200	40	75.1	83	83	16.65	916	84	184.1	79	80	19.37	1040	98	267.2		
2108	84	84	17.59	200	40	77.3	84	84	16.84	912	84	188.5	80	81	19.56	1036	98	272.4		

Fuel mitigation:

The SAL series of blocks contain 69,219m³ and average 132m³/ha. 114m³/ha is dead material that over time will fall and endanger any future regeneration. In addition to the danger of a secondary intense burn in the future to the natural regeneration and soils in these blocks, there is potential for further spread beyond to forests that are critical timber supply for mills in the area.

In summary, the work carried out on the visual polygons 247 and 270 show that the salvage of these blocks will benefit visual resources through increasing VEG recovery, recover damaged volume, improve stand productivity, and mitigate their contribution to a higher future potential fire intensity during reburn. We also ask for consideration and approval of a shortened referral period for the subsequent FSP amendment.

Sincerely,

Jaret van der Giessen, RPF
Senior Planning Forester